Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
the number of unique binary search tree can be interpreted as given an index i from [1,...,n],
numTrees(1...i)*numTrees(i+1...n).
So here is the dp solutions.
public int numTrees(int n) {
if (n<=1) {
return n;
}
int[] results = new int[n+1];
results[0] = 1;
results[1] = 1;
for (int i=2; i<=n; i++) {
for (int j=0; j<i; j++) {
results[i] += results[j] * results[i-j-1];
}
}
return results[n];
}