Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example,
given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
Same idea as Combination Sum, use a previous variable to track previous element in the array to avoid duplicate results, also do not add the current element in the next recursion.
public List<List<Integer>> combinationSum2(int[] num, int target) {
List<List<Integer>> results = new ArrayList<List<Integer>>();
if (num==null||num.length==0) {
return results;
}
Arrays.sort(num);
combinationSum2(results, new ArrayList<Integer>(), 0, num, target, 0);
return results;
}
public void combinationSum(List<List<Integer>> results, List<Integer> result, int sum, int[] num, int target, int level) {
if (sum>target) {
return;
}
if (sum==target) {
List<Integer> solution = new ArrayList<Integer>(result);
results.add(solution);
return;
}
//since the passed num is sorted, use one previous value to track already added value to avoid duplicate solution
int previous = -1;
for (int i=level; i<num.length; i++) {
//why do we want to use previous? For example [1,1,2,5,6,7],
// we do not want to recalculate the second 1 since the first 1 is already calculated
if (num[i]!=previous) {
result.add(num[i]);
sum+=num[i];
combinationSum2(results, result, sum, num, target, i+1);
previous = num[i];
sum-=num[i];
result.remove(result.size()-1);
}
}
}