Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example,
given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]
Sort the input array, then keep adding the elements until the sum is greater than the target value.
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> results = new ArrayList<List<Integer>>();
if (candidates==null || candidates.length==0) {
return results;
}
Arrays.sort(candidates);
combinationSum(results, new ArrayList<Integer>(), 0, candidates, target, 0);
return results;
}
//candidates need to be sorted
public void combinationSum(List<List<Integer>> results, List<Integer> result, int sum, int[] candidates, int target, int level) {
if (sum>target) {
return;
}
if (sum==target) {
List<Integer> solution = new ArrayList<Integer>(result);
results.add(solution);
return;
}
for (int i=level; i<candidates.length; i++) {
sum = sum + candidates[i];
result.add(candidates[i]);
//we pass the current level in, so it will keep adding the current element until it is more than the target
combinationSum(results, result, sum, candidates, target, i);
result.remove(result.size()-1);
sum = sum - candidates[i];
}
}